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ABSTRACT

A low work function dispenser type photocathode that is self-annealing or repairing would
have a substantial impact on Free Electron Lasers (FEL’s).  On such a cathode, the emitting
surface is constantly renewed by replenishment of low-work-function material. A photo-
dispenser cathode should operate at a relatively low temperature compared to a
conventional dispenser cathode (but higher than a metal photo-cathode to improve lifetime),
and is anticipated to be robust and long-lived.  Coatings cause a reduction in the transport
barrier experienced by the electrons through a complex modification of the potential at the
surface, e.g., a reduction in work function due to dipole effects.  In this work, we address
several such theoretical components in the theory and simulation of advanced photocathodes
as part of a program, concurrent with experimental efforts [1], to develop dispenser
cathodes for use in high power rf photoinjectors.  Issues in a theoretical description of the
emission process include: the nature of the energy distribution of the photo-excited electrons
(used, e.g., in beam formation and emittance growth simulations); methods to model
emission; the dependence of the emitted current on coverage, the nature of the low work
function coating (and its effects on the emission barrier); and environmental conditions such
as background pressure and operational temperature.  Developments in and the status of
these emission models will be the subject of the present work.

SEE ALSO: (TU-P-09)
“Experimental Studies of Advanced Photocathodes” D. W. Feldman, P. G. O’Shea, K. L. Jensen, M. Virgo
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OUTLINE

PART A:  TRANSMISSION COEFFICIENTS AND A THERMAL-FIELD EQ.

∑ FN-RLD Theory Update:  for Photoemission Near the Barrier Maximum,
Approximations Used for the Transmission Coefficient, As Developed for the Fn
and Rld Equations, Break Down.  A Hyperbolic-Tanh Approximation to T(E) Is
Developed, Which Can Be Used to Give a Generalized Thermal Field Equation.

PART B:  A MODEL OF PHOTOEMISSION FROM A TUNGSTEN TIP

∑ Using T(E) Developed Above, the Analysis of the Expected Quantum Efficiency
From a Laser-illuminated Tungsten Tip Is Evaluated.  A Description of the
Geometrical Model of a Tungsten Wire Is Provided.  The Methodology of
Evaluating the QE Estimate Is Developed.

PART C:  TOWARDS A MODEL OF THE DIPOLE LAYER:  THE WIGNER
FUNCTION APPROACH

∑ Coatings (e.g., Ba) bring F down By Modifying the Surface Barrier (Work

Function Lowering).  Phenomenological Theories Relating Coverage to F Do Not

Treat the Barrier Shape.  An Overview of Methodology Being Developed to
Analyze the Barrier and Dipole, Using a Wigner Function Approach to Emission
Including Many-body and Electron Density Variation Effects, Is Given.
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8-12

13-19
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The Fowler Nordheim (FN) and Richardson-Laue-
Dushman  (RLD) Eqs. Dependent upon Twkb(E)

THE FN, RLD, & WKB APPROXIMATIONS
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T(E) SYNTHESIS & TANH-T(E) MODEL
Airy and WKB Synthesis
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Ec ESTIMATION & Em BEHAVIOR

Compared to a Numerical Search for Em
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Simple Model:  A Triangular Potential Barrier

Schrödinger’s Eq. Solution (Leading Order)

• rrrr(x) affected Mostly by Barrier Height, Less

by Details for “Abrupt” Potentials:  Effects of
a Change in Barrier Height Result in a Shift in
Electron Density - Less by a Change in Shape
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SIMPLE MODEL OF 3-D
A Line of Uniform Charge Per Unit Length Gives
Rise to Ellipsoidal Equipotential Lines and May

Be Used to Model Apex Fields
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ELLIPSOIDAL FIELD VARIATION

Potential in Ellipsoidal CoordinatesPotential in Ellipsoidal Coordinates
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FN QUANTUM EFFICIENCY  (1-D)

# e– Out Per Unit Time Per Unit Area In
3-step Emission Model Is Current Density
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THE WIGNER FUNCTION APPROACH
The Wigner Function Is a Quantum Distribution Function Satisfying an Equation Similar

to Boltmann’s Transport Equation (BTE), but Includes Effects Due to Tunneling.
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DISCRETE VERSION OF WDF DIFF. EQ.

The numerical solution of the WDF integro-differential equation generally requires upwind-
downwind second order differencing algorithms which account for incoming boundaries for k > 0
(LHS) and k < 0 (RHS), necessitating a large sparse-matrix solution.  However, for photoemission
conditions, it is the case that in the absence of excitation, no tunneling transmission occurs and all
electrons are reflected.  Consequently, f(x,–k) = f(x,k).  This allows for a vastly lower memory
approach as well as the inclusion of the k = 0 momentum value which is normally excluded but
which has important consequences.  The price is small accumulating numerical errors.

Discretization of variables

• k(j) = j∆k;   y(l) = l∆x

• f(x,k) = Fj(x)

• ∆Vl(x) = V(x+l∆y)–V(x–l∆y)

Discretization of variables

• k(j) = j∆k;   y(l) = l∆x

• f(x,k) = Fj(x)

• ∆Vl(x) = V(x+l∆y)–V(x–l∆y)

DIFFERENCING OPERATOR
Second-order accurate scheme
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HYPERBOLIC DENSITY APPROXIMATION

Effects from an abrupt boundary can extend far into metal where variations are minor and
compromise numerical methods.  An approach is to use a non-uniform discretization in x so that
where the potential is smooth (further away from the origin) the separation between adjacent points
increases so that a coarse grid is used, but near the origin where the potential is rapidly varying, a
fine grid is used.  An analytical approximation to the potential (and by virtue of the Exchange-
Correlation Potential, the density) must be used.  We employ the TANH approximation to density,
where the parameters are extracted from the numerical solution of the WDF, thereby maximizing
correspondence.
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potential to construct V(x).  Multiple iterations ensure
solution is consistent.
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NUMERICAL RESULTS OF WDF

Preliminary results show viability of method to
extract the Exchange-Correlation, electron dipole,
and ion potential from the WDF.  Parameters are for
Tungsten.   The effects of  the addition of a dipole
term arising from coatings (e.g., Ba) modify the
form of V(x).  The results of these simulations shall
be shown in a separate work.
Spacing Algorithm (∆xo = 0.2 Å; C = 2.0, N = 45)
Maximum x = 1.12 nm; Minimum x = –7.3 nm
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SUMMARY

Part A:  Transmission Coefficients And A Thermal-field Eq.

∑ A TANH Model of the Transmission Coefficient Was Developed Based on an
Analysis of Tunneling and Thermionic Emission Phenomena.

∑ A Generalized Thermal Field Emission Equation Was Given.

Part B:  A Model Of Photoemission From A Tungsten Tip

∑ The Transmission Coefficient From Part A Was Used, Along With the Analytical
Image Charge Approximation, to Estimate Quantum Efficiency From an
Illuminated Tungsten Wire.  Approximation Formulae Are Given.  Numerical
Results Were Obtained for the Case of a Rotationally Symmetric Ellipsoidal Wire.
Precipitous Drop-off As a Function of Photon Wavelength Observed.

Part C:  Towards A Model Of The Dipole Layer:  The Wigner Function Approach

∑ Methodology for Generating the WDF for the Emission Barrier Under Assumption
That Non-photoemission Current Was Negligible Was Given. Relied on Symmetry of
the Distribution Function Associated With Non-emission, Thereby Allowing the k=0
Component to Be Included.  Designed to Allow for Coating Modifications.

∑ Electron Density Variation Strongly Resembles a TANH Function and Allows for a
Discretization Alogorithm Which Extends Far Into the Bulk.


